Unsupervised single image dehazing with generative adversarial network

نویسندگان

چکیده

Abstract Most recent learning algorithms for single image dehazing are designed to train with paired hazy and corresponding ground truth images, typically synthesized images. Real datasets can help improve performance, but tough acquire. This paper proposes an unsupervised algorithm based on GAN alleviate this issue. An end-to-end network architecture is established fed unpaired clean signifying that the estimation of atmospheric light transmission not required. The proposed consists three parts: a generator, global test discriminator, local context discriminator. Moreover, dark channel prior attention mechanism applied handle inconsistency haze. We conduct experiments RESIDE datasets. Extensive demonstrated effectiveness approach which outperformed previous state-of-the-art methods by large margin.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Image-to-Image Translation with Generative Adversarial Networks

It’s useful to automatically transform an image from its original form to some synthetic form (style, partial contents, etc.), while keeping the original structure or semantics. We define this requirement as the ”image-to-image translation” problem, and propose a general approach to achieve it, based on deep convolutional and conditional generative adversarial networks (GANs), which has gained ...

متن کامل

SRPGAN: Perceptual Generative Adversarial Network for Single Image Super Resolution

Single image super resolution (SISR) is to reconstruct a high resolution image from a single low resolution image. The SISR task has been a very attractive research topic over the last two decades. In recent years, convolutional neural network (CNN) based models have achieved great performance on SISR task. Despite the breakthroughs achieved by using CNN models, there are still some problems re...

متن کامل

Gated Fusion Network for Single Image Dehazing

In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input. The proposed algorithm hinges on an end-to-end trainable neural network that consists of an encoder and a decoder. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result us...

متن کامل

Wasserstein Generative Adversarial Network

Recent advances in deep generative models give us new perspective on modeling highdimensional, nonlinear data distributions. Especially the GAN training can successfully produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum likelihood learning and instead adopts an two-player game approach. This new training behaves very differently compared to ML learning. Ther...

متن کامل

Controllable Generative Adversarial Network

Although it is recently introduced, in last few years, generative adversarial network (GAN) has been shown many promising results to generate realistic samples. However, it is hardly able to control generated samples since input variables for a generator are from a random distribution. Some attempts have been made to control generated samples from GAN, but they have shown moderate results. Furt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multimedia Systems

سال: 2022

ISSN: ['1432-1882', '0942-4962']

DOI: https://doi.org/10.1007/s00530-021-00852-z